The degradation mechanism of sulfamethoxazole under ozonation: a DFT study.

نویسندگان

  • Hang Yu
  • Pu Ge
  • Jingwen Chen
  • Hongbin Xie
  • Yi Luo
چکیده

Sulfamethoxazole (SMX), a kind of antibiotic, remains in the environment and threatens public health. Ozone as a strong and green oxidant was widely used for selective oxidation degradation of residual SMX. However, it is hard to elucidate the detailed oxidation mechanism through current experimental approaches. A theoretical study has been carried out herein for exploring possible ozonation pathways of SMX. Two reaction mechanisms, viz., direct addition (DA) and H atom transfer (HAT), are considered. The results show that the primary oxidation of aromatic rings (benzene or isoxazole rings) of SMX follows the DA mechanism, featuring an electrophilic addition. Whereas, the oxidation of amino and methyl groups of SMX follows the HAT mechanism. Following the proposed mechanisms, the primary oxidation products detected in previous experiments could reasonably be obtained according to the current calculations. More importantly, O3 molecules as an electrophilic agent feasibly attack the moiety having a large orbital contribution to the highest occupied molecular orbital (HOMO) of sulfonamides. This result suggests that the primary ozonation site of sulfonamides could be theoretically predictable through the information of their frontier molecular orbitals. Meanwhile, a positive correlation between the O3-mediated HAT energy barriers and bond dissociation energies has been found for N-H and C-H bond oxidations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Efficiency of UV/TiO2 and UV/O3 Processes in Degradation of Sulfonamide Antibiotics in Aquatic Solution

Background and purpose: Emerging pollutants such as antibiotics are resistant to biodegradation. The aim of this study was to compare the effect of photocatalytic and Ozonation photolysis on decomposition of Sulfonamide antibiotics (Sulfacetamide, Sulfathiazole, Sulfamethoxazole, and Sulfadiazine) in aquatic environments. Materials and methods: In this study, experiments were conducted discont...

متن کامل

Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders.

Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution. The batch experiments were carried out to investigate the effects of key factors such as catalyst dosage, ozone dosage, solution pH and tert-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA. Density functional theory (DFT) was ado...

متن کامل

Degradation Efficiency and Kinetic Study of Phenol by Catalytic Ozonation Process in the Presence of Calcined Scallop Shell

Abstract Introduction: Phenol is amongst the dangerous environmental pollutants, which due to its presence in the industrial effluents, should be removed. Objective: The aim of this study was to evaluate the efficiency of catalytic ozonation by calcined scallop shell as a catalyst in the removal of phenol Materials and Methods: Scallop shells were collected from the coast of Caspian Sea in G...

متن کامل

Kinetic Investigation of Degradation of 4-Nitrotoluene in Aqueous Environment by MnO2/Clinoptilolite/O3 Process

Background & Aims of the Study: 4-Nitrotoluene (4NT) is a toxic, resistant, and carcinogenic pollutant. The current study aimed to investigate the degradation and mineralization of 4NT regarded as one of the components of petrochemical wastewater using MnO2/Clinoptilolite (CP)/O3 process. The present study also examined the effect of several operational parameters. Materials and Methods:  S...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science. Processes & impacts

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2017